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Abstract

A random distribution of relaxation/retardation rate constants is derived and incorporated into the thermodynamic theory of strength of
imperfect (real) polymer fibers, which is used to analyze empirical polyethylene (fiber) strength data. The results, weighted equally with
previous results, give for the perfect polyethylene fiber — the only unique reference state — at 25°C: o.(strength) = 7.5 GPa,
K (modulus) = 325 GPa, &.(strain) = 0.023, and W, (failure work) = 0.087 GPa. These numbers represent the best currently available
for the characterization constants of a perfect fibrilliform single crystal of finite molecular weight polyethylene. The widths of uncertainty
are ca. 15%. Also, these numbers are exactly those calculated with the thermodynamic theory of failure based on stress-induced fusion with a
constant heat of fusion. Such figures indicate the general strength of the fusion theory. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The failure point of crystalline fibers composed of ultra
high molecular weight polymers of finite molecular weight
recently has been interpreted as a thermodynamic first-order
crystal-melt phase transition [1,2]. Reversible tensile defor-
mations reduce the fiber crystalline melting temperature in a
predictable fashion, allowing the stressed fiber to melt and
fail by molecular flow (slippage) and/or rupture. The theory
appears to handle brittle fracture quantitatively, but ductile
properties remain in a qualitative realm. Perhaps the differ-
ence is determined by temperature—viscosity behavior.
High internal viscosities at lower temperatures might pre-
cipitate brittle fracture by allowing fiber strain to outrun
molecular slippage. But higher temperatures diminish vis-
cosity, generating long range ‘liquid’ like ductile behavior,
which also may be replicated at low temperatures by slow
deformations. The viscosity referred to is that of the poly-
mer melt. Both stress and fracture can produce a few chemi-
cal bond scissions [3], but they are merely incidental to the
fracture process and play but a minor role, certainly not one
as initiator unless polymer molecular weight is infinite [2].
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The ‘melt’ phase generated by tensile stress might not
materialize completely as a randomly oriented amorphous
melt. Randomization of an ordered fibrilliform configura-
tion of long, non-crystalline extended polymer molecules
should be hampered by a necessity to maintain requisite
interunit non-bonded contacts. This requires cooperative
conformational motions of several molecules until a gradual
randomization is achieved, a process that may require a
great deal of time. In no sense does a true random amor-
phous phase appear in the short time allowed before mole-
cular slip in the tensile direction occurs. Once slip is
possible stress is diminished, and even a minute diminution
below the critical fusion level regenerates crystallization in
a relaxed state. However, if the critical stress is maintained
molecular slip along the fiber axis continues until fracture,
which may be early (brittle) or late (ductile) depending upon
stretching conditions and temperature.

Fusion is initiated when the chemical potential of a crys-
talline unit equals that of a similar amorphous unit in the
melt at the same temperature and pressure. A crystal
supporting a c-axis stress of the right magnitude fulfills
this requirement. Consequently, under this condition the
extended, oriented polymer molecules are not rigid rods
but capable of amorphous flexibility if an opportunity avails
itself. This is evident in axial flow (slip) under critical stress.
Slip generates internal pores of high interfacial energy
within rigid arrays. But conformational flexibility allows
neighboring segments to fill such voids or prohibit their
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formation altogether, resulting in a reduced fiber cross-
section. Without this ‘melt’ flexibility a constant Gibbs
energy density could not be maintained. It certainly appears
that the most thermodynamically efficient way to mobilize
crystalline molecules is via a first-order phase transition, in
this case a solid-melt transition.

The last word on this is to be found in empirical data.
Does experiment agree with theory in a convincing fashion?
This article focuses on two quantities that appear relevant to
this question: the tensile work W* required to induce fusion,
and the ratio of the strength o to the strain at break &*. W
is important because of its theoretical simplicity and unam-
biguous relationship to classical thermodynamic qualities. It
is central to the theory of perfect (ideal) fibers [2]. The ratio
o"/e" is found to be

*
(o

= = 7K ey

&

where K; is the initial modulus and 7y is a theoretical
constant determined by the particular test procedure and
the distribution of relaxation/retardation times [4]. The
validity of Eq. (1) is central to the entire theory of imperfect
(real) fibers [4]. If the distribution of relaxation times is
monodisperse, y = 0.613 in creep and 0.632 for constant
strain-rate deformations [4]. An extensive study of poly-
thylene fibers [5] determined y = 0.69 for the latter, but
some literature data [6] indicate 0.64, close to the mono-
disperse value [4]. An error of this size also will manifest
itself in the tensile work.

To pursue this further we require a distribution function
of relaxation times. The gamut would seem to span from
monodisperse to random. We already have the monodis-
perse. We derive in Appendix A the random and draw
upon those results in the body of this report as needed.

As all of this work is recent and original, a very brief
overview is desirable at this point. The thermodynamic
theory of polymer fibers divides into two parts: the perfect
(ideal) fiber [1,2] and the imperfect (real) fiber [4]. The two
are inseparable. The perfect fiber, being ideal and non-
existent, can be characterized only by analysis of the real
imperfect fiber [5]. However, the real fiber cannot be
analyzed without the rigorous theory of the ideal fiber [2],
and even so some approximations are required that fortu-
nately decrease in importance as near perfection attains [4].

The perfect fiber [1] is completely crystalline, oriented,
and uniform. Its constituent polymer, however, is real with a
finite molecular weight that prohibits the melt phase from
supporting an equilibrium stress. The completely crystalline
fiber is perfectly elastic, i.e. reversibly Hookean in its tensile
behavior until failure at the critical melting stress o, which
is the maximum stress the fiber can support at a given
temperature and pressure. The thermodynamics of the
perfect fiber have been extensively developed [2], including
the fusional transition with regard to temperature 7 and
pressure P, the tensile work of fusion (failure), the variation
of fiber (crystal) modulus with 7 and P, and the variations

of volume, enthalpy, entropy, Poisson’s ratio, etc. with
tensile stress. The results are, in general, rigorous and
often simple [2].

The imperfect fiber, especially a nearly perfect one, is
visco-elastic, non-Hookean, and incompletely crystalline
and oriented [4]. Its crystalline phase behaves in complete
accord with the perfect fiber under similar conditions. The
origin of visco-elasticity of highly crystalline fibers might
arise principally from a heterogeneous stress distribution
that melts over-stressed crystalline regions, allowing stress
relaxation and recrystallization [4], hardly an original
proposal in its general form. But a new twist appears to
add substance to the idea [4]. The breaking time f3 of a
fiber supporting a constant tensile load has been interpreted
[4] as the particular retardation time of creep failure 7* =
tg, which is the sole principle or condition that produces
Eq. (1). The breaking time traces to an activation energy
of fracture of polythylene equal to the heat of fusion of about
31 methylene units [4] — the approximate size of the
Krausz—Eyring kinetic unit of molten polymer flow [7]
(of polyethylene) at room temperature. Thus, the activation
volume should be that of a methylene unit, 1.4 X 1075m3/m01,
which compares favorably with the experimental value of
ca. 1.6 X 107> m¥mol®. It was shown [4] that the failure
condition 7" =1ty also applies to constant strain-rate
deformations.

Overall, such figures indicate support for a connection
between localized, stress-induced melting and the visco-
elastic behavior of real, imperfect fibers, which therefore
implies support for the entire concept of stress-induced
melting as apparently manifest in fiber failure and perhaps
cold drawing as well. A possible influence of a relaxational
distribution function is important to explore.

2. Constant strain-rate deformations

A highly drawn semi-crystalline fiber exhibits visco-
elastic behavior upon tensile deformation at a constant
rate of strain. The appropriate simulant is a parallel array
of Maxwell elements with a random distribution of relaxa-
tion constants k; = jk; given by Eq. (A6) in Appendix A
N =NE —De™,  j=123,.., 0,
where e — 1 = ((j) — 1)', {j) is the average value of j and
expected to be large so that 8 = (j)'. N; is the number of
elements of j and N is the total systemic elements. The stress
o;jon one of the N; elements of relaxation rate constant k; =
Jjk; at time ¢ is

(K)é
g; = —
J ]kl

[1—e /M, )

and (K) is the average modulus, k; the fundamental or
smallest rate constant in the system, and ¢ the rate of strain,
& = ¢&/t. Eq. (2) is identical to eq. (11) in [4].
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We have then for the total stress
& K.é 1—e?
_ _ B _
o= El,fffNi— T @ m“[m]’ 3)

where K; = N(K) is the array’s (fiber’s) initial modulus or
the total springs’ moduli, g is given by

g=kr+p="T 1 p @

W

with (k) = (j)k,, representing the average relaxation rate
constant. The reciprocal of (k) often will be written as a
relaxation time 7" of failure, equal to the time of break fg.
This follows from our earlier report demonstrating that
7'k = 1 if the distribution is monodisperse. Polydispersity
then clearly requires 7 (k) = 1 as a general condition of
failure. Because (j) is large, perhaps two or three orders of
magnitude, or even more, this condition of failure limits g to
very small values in all situations and permits an excellent
simplification of Eq. (3) to

_ K&
R0

Corresponding deformational work W is easily found
with Eq. (5) to be

o In[1 + (k)1]. o)

& : 2
W:JOUdszKi(%> [x(Inx — 1) + 1], (6)

with x =1 + k)t and & = ét.

Both Egs. (5) and (6) are highly accurate for all situations
in which (j) > 1, so accurate, in fact, that they are written
as equalities rather than approximations. Using an asterisk
to signify the fiber failure (fusion) point, we have from
Eq. (5) and the failure condition (k) = 1 the failure strength
o at failure strain &”

o = K" In(2) = 0.693K;&", )

thus y = In(2) = 0.693.
If we let £ In(2) = &, a strain, then

O'* = Kié‘i = 03, (8)

which represents a Hookean, reversible fiber that fails at
strength o equal to the actual strength of the real fiber o
at a failure strain &; = ye" and a modulus equal to the initial
modulus (the spring modulus) of the actual fiber. This
imaginary fiber is the equivalent Hookean fiber earlier
defined [4] that behaves as a perfect fiber of the same melt-
ing temperature, heat of fusion, and entropy of fusion as the
actual fiber. It is the link between the equilibrium thermo-
dynamics of the perfect (ideal) fiber and the viscous kinetics
of the imperfect (real) fiber, although not without approx-
imations. Fortunately, approximations decrease in impor-
tance in the realm of nearly perfect fibers of high
crystallinity. It is not an overstatement to say that at this
time the equivalent perfect fiber is the only tool available for
meaningful analyses of real, visco-elastic, imperfect fibers.

By Eq. (6) the work to failure W* becomes
W =K.&?[21In(2) — 1] = 0.386K,&™, 9)
and the failure work of the equivalent fiber W; is

[In(2)]*
2 22InQ) —1]

2
K¢

W; = W =0.622W", (10)

which is reversible, Hookean work approximated by fusion
theory [2] as

W; ~ wAH,(1 — TITy) = oW,, (11)

where o is the degree of crystallinity, 7 the unstretched
fiber’s melting point and AH, is the heat of fusion of the
perfect fiber.

Picking up Eq. (7), writing it in the form of Eq. (1) gives

* 2
g YO
= yK. = ,
= K=oy
or

) 0_* 12 ) 0_* 12
g, = ; e Wi = ; p C()WC . ( 1 2)

This form is preferred because it emphasizes the ratio
(o*/&") rather than ", &* separately. In the case as hand
the emphasis is of no importance. There is only one stress
and one strain at failure. No other possibilities exist.
However, the form of Eq. (12) is general for several experi-
mental techniques, including creep. With creep there are
multiple breaking stresses and strains for a given fiber, but
according to theory there is only one ratio (o*/&”) and it is
this ratio that must connect with the equivalent fiber. In
creep o; # o, & # &, but

& ve*

in all cases.

3. Dimensional creep under constant tensile load

A constant strain-rate deformation inherently is a thermo-
dynamically reversible procedure, provided the strain-rate is
not excessive. By this we mean that a reversible fiber,
devoid of all tendencies toward stress relaxation, performs
reversibly at reasonable rates of strain. But practically all
polymer fibers are mechanically irreversible and perform as
such in this procedure, a fault of the fiber and not of the
experimental technique. None of this is so for a classical
creep procedure. Creep is a tensile deformation by a
constant load, a dead load. It is a perfect example of a single
step, irreversible procedure in which irreversibility attains
regardless of the fundamental properties of the fiber itself.
Irreversibility inherent to the fiber compounds the situation
further. The reader is reminded that a thermodynamic rever-
sible transformation is one for which both system (fiber) and
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surroundings are reversible. For classical creep (constant
load) the surroundings are never reversible even if the
fiber is reversible. It must not be forgotten that the deforma-
tional work in creep is always irreversible; there is no such
thing as a reversible deformation path in classical creep.
Creep deformational work is unrelated to equilibrium fiber
thermodynamics. Therefore, such work, though in principle
easily and accurately determined, is of no consequence for
our equilibrium (reversible) thermodynamic theory of
fibers. Only deformational work along a reversible path is
appropriate.

As a result, creep obscures the equivalent fiber that is so
readily constructed if strain-rate is constant. Because the
equivalent fiber is necessary in order to characterize the
perfect crystalline fiber, which is the sole, unambiguous
reference state of a polymer fiber, creep is hardly an experi-
mental technique of first priority.

An analysis of creep quickly stalls for want of additional
information. The random distribution gives for creep

al eP —1
gzz_l_(eq—l)+<k>t]' (13)

For (j) > 1, this approximates to

1
= — 1 e —
2

+ (k)t]. (14)

Invoking the fracture condition (k)r — 1, we have

o' = %Kig* (15)
or
o k=T ol
ve" Yo 2W;
Then

% 172 % 172
LT

where y = 2/3, and W; (the reversible work of fusion of the
equivalent fiber) is approximately equal to the work of the
perfect fiber W, reduced by the crystallization, W; = oW..

The difficulty is Eq. (16), which traces back to Eq. (15).
We have no independent means of ascertaining the stress
experienced by the equivalent fiber, o;. An analysis is
possible for a constant strain-rate deformation in which
o; = o but not for creep where o; # ¢ . It is here empha-
sized that the asterisk symbolizes a failure or fracture
condition of the actual fiber. It does not represent a thermo-
dynamic characterization constant unless the fracture con-
dition refers to a perfect fiber, i.e., 0" = o, etc. At constant
strain-rate, the asterisk can also denote a characterization
constant of the equivalent fiber since o = oj, but that
denotation perhaps should be avoided here because an
equivalent fiber, being so emeshed in crystallinity and

morphology, may be impossible to define uniquely, contrary
to the perfect fiber.

According to the fusion theory recipe, Eq. (15) should
represent a valid result capable of verification. In a creep
experiment the load (o = o) is arbitrary. For various loads
(on identical fibers), is the ratio o*/&" constant? And does it
equal yK;? These questions appear to be quite important, but
whatever the answers, without a means of extracting from
the creep experiment a value of o, further progress in not
possible.

4. Results and discussion

Analyzing a real imperfect (visco-elastic) polymer fiber
requires construction of a corresponding equivalent perfect
(reversible) fiber [4] to which the thermodynamic fusion
theory of perfect fibers [2] can be applied [S]. This hypo-
thetical perfect fiber must devolve directly from the
empirical process employed, without extraneous help, if
the process is to stand-alone. Both creep and stress relaxa-
tion fail on this account. But constant strain-rate deforma-
tion easily qualifies: the equivalent perfect fiber is readily
deduced from the experimental stress—strain behavior [4].
The equivalent fiber is an imaginary perfect fiber identical to
the actual real fiber in all aspects except reversibility. The
real fiber is visco-elastic, the equivalent fiber is perfectly
elastic (i.e. reversible) and, therefore, subject to thermo-
dynamical analysis.

We hypothesized a cause-effect link of melting to mobi-
lity [1,4]. Irreversible visco-elasticity in a high crystalline,
high molecular weight fiber wherein individual molecules
pass through many crystalline—amorphous domains should
be slight unless some melting frees up sub-molecules for
stress generated rearrangements, perhaps followed by
recrystallization in a more relaxed condition. The group of
relaxation times or relaxation rates reflects various local
conditions impinging upon crystallites or portions thereof.
As the solid-melt transition is of necessity a cooperative
phenomenon it is doubtful that relaxation times pertaining
to molecules or submolecules are of much import directly
on melting. Rather, they might contribute in a local aggre-
gate to produce an effective time pertinent to a particular
crystalline element, if they contribute at all.

The equivalent perfect fiber, however, stretches in a
reversible, Hookean fashion up to the point of failure in
exact accord with a perfect fiber [4]. Melting and recrystal-
lization does not occur en route, only at the critical fusion
point, at which the equivalent breaking stress o is the same
as the actual breaking stress o, but equivalent breaking
strain &; equals y&". Real fiber data bubbles up the equiva-
lent perfect fiber so easily as to be obvious [4]. Consequent
thermodynamic analysis is straightforward.

The equivalent fiber, if it is reversible, must be indepen-
dent of strain-rate &. At failure t — 7" and 7 & = £ (P, T)
which reveals how 7" depends upon strain-rate at constant
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Table 1

Recalculated polyethylene fiber data [5] using the random distribution of rate constants &' = 0.693¢", K' = o*/&’

o’ (GPa) &' &' K' (GPa) w (wK)" (/K"
0.97 0.072 0.050 19.44 0.705 3.70 0.190
2.07 0.088 0.061 33.93 0.757 5.07 0.149
2.54 0.071 0.049 51.63 0.864 6.68 0.129
3.12 0.065 0.045 69.33 0.916 7.97 0.115
3.22 0.069 0.048 67.36 0.831 7.48 0.111
3.38 0.067 0.046 72.84 0.816 7.71 0.106
4.65 0.040 0.028 167.87 0.875 12.12 0.072
4.67 0.052 0.036 129.72 0.864 10.59 0.082
4.90 0.051 0.035 138.81 0.880 11.05 0.080
5.88 0.058 0.040 146.27 0.925 11.63 0.080
6.37 0.042 0.029 218.90 0.956 14.47 0.066
6.83 0.060 0.042 164.18 0.964 12.58 0.077
7.15 0.034 0.024 302.98 0.984 17.27 0.057

pressure P and temperature 7 under reversible conditions —
slower rates of strain. Therefore, fiber strength is also inde-
pendent of strain-rate so long as the region of reversibility is
not abandoned, which will gradually occur if ¢ is promoted
to higher rates that permit stress to lead strain. Such irrever-
sibility eventually displays a strength noticeably in excess of
the thermodynamic equilibrium amount. In short, a classical
irreversible condition produces higher irreversible strength,
and, it should be added, higher failure work.

Our polyethylene (PE) data published earlier [5] is here-
with subjected to re-analysis based on the random distri-
bution of rate constants. The principal study involved high
strength fibers of Himont 1900 PE. A much smaller
sampling of GUR 412 PE was also mentioned. Both materi-
als are listed in Table 1-3 of Ref. [5]. The Himont data
(Tables 2 and 3) consisted of 177 test samples from 40
separate fibers. Each fiber yielded either four or five
samples. Plotting fracture data in accord with Eq. (7) reveals
v=0.69. GUR fibers [5] (Table 1), limited to only 17
fibers, gave y = 0.71. The theoretical value employing the
random distribution is y = 0.693, and for a monodisperse
distribution [4] y = 0.632. Analysis [4] of 15 PE samples
reported in the literature [6] gave y = 0.64. On balance,
these figures favor the random distribution simply because
of the great number of tests executed. But some reservations
persist. For example, thirteen of the Himont fibers were also
included in a further analysis involving crystallization,
modulus, and work of failure. These fibers, consisting of
58 test samples, displayed y = 0.66 [5].

The 13 Himont fibers mentioned also are herewith
analyzed anew in the fashion shown in Ref. [5] but with y =
0.693,0r & = & = 0.693s" and K’ = o"/’. Aplotof ¢* vs
(wK’)" gives for the perfect crystalline polyethylene fiber
work of failure (fusion) W', = 0.094 GPa. Equally valid is a
plot of & vs (w/K")""*, from which W, = 0.082 GPa. The
average W, = 0.088 GPa and the determined value o, =
7.5 GPa produce K’ =320 GPa and &, = 0.023. A sub-
script ¢ denotes the perfect crystalline fiber. Table 1
provides the recalculated data (&', K'). W/, may be obtained

from the slopes of the mentioned plots using Eq. (12) with
o,= 0" =R2wK'W.]" and with & = [oW.L/K']".
Alternatively, the appropriate columns may be averaged
and W/, calculated directly.

The results of one (o = 0.97 GPa, see Figs. 4 and 7 of
Ref. [S]) of the 13 fibers appear erroneous in the same
manner as reported earlier [5]. Eliminating it, the remaining
12 yield for the respective plots (above) W’ = 0.097 and
0.092 GPa, for an average of W, = 0.095 GPa. Therefore,
0. = 1.5 GPa, K., = 296 GPa, and &, = 0.025.

Both results above seem less attractive than former results
[5] exclusively because W', is climbing higher than can be
justified easily. The value of vy seems right and the value of
W/, seems wrong, so our data neither supports nor rejects the
random distribution of relaxation rates. Perhaps, the true
situation lies somewhere between the extremes of mono-
disperse and random rates. Then we should include these
with the former mix [5] of analytical results based on y =
0.632, and on the empirical (graphical) determination of &;
and K, as opposed to calculated (&', K'). Thus, we have
o. = 7.5 GPa in all cases, and

0.081 < W, < 0.095 GPa,
296 < K, < 347 GPa,

0.022 < &. < 0.025.

To the extent that the value o, = 7.5 GPa is correct, or
reasonably correct, these windows should be reliable.
Almost certainly the perfect fiber (crystal) modulus K. is
somewhere between ~300 and ~350 GPa.

The fiber tests [5] were performed at 25°C and atmospheric
pressure. Consequently, the figures are characteristic of the
perfect crystalline fiber — a perfect fibrilliform single crys-
tal of finite molecular weight polyethylene — under essen-
tially standard state conditions, i.e. unit activity. If forced to
select a number for each quantity, it would be an average
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over all six sets of analyses weighted equally:

o, = 7.5 GPa,

W, =~ 0.087 GPa,
K. ~ 325 GPa,
& ~ 0.023.

Of course, other choices are available. We could count
the graphical results as one-half instead of one-third, but the
numbers barely change.

The earlier analysis without the random distribution
gave o, = 7.5 GPa, W, = 0.084 * 0.003 GPa, K. = 335 =
12 GPa, and &. = 0.0225 %= 0.0005. Including the random
distribution increases the upper limit of W,, and decreases
the lower limit of K, to ca. 300 GPa.

These new results are interesting. They are essentially
identical to the 12-fiber results — both graphically deter-
mined and calculated via y = 0.632 (monodisperse distribu-
tion) — reported earlier [5].

The thermodynamics of perfect fibers [2] provide a
rigorous method of calculating the tensile fusional work
required to destroy a fiber. This work is identified with
W,, the failure work. For our calculation it is necessary to
defer to an approximation of constant heat of fusion AH, =
0.293 GPa to obtain

W, ~ AH,(1 — T/T,) = 0.0867 ~ 0.087 GPa,

where T is the unstressed fiber melting point (423 K) and T
is the ambient temperature (298 K). With o, = 7.5 GPa, we
have K, = 325 GPa and ¢, = 0.023.

Of course, this is too good to be true, and it is not. The
problem is that AH, is not a constant. Its value must
decrease as temperature decreases, which lowers W, also,
so that W, < 0.0867 GPa is mandatory, although we cannot
now say how much less it is. Note that a lower W, gives a
higher K. for the same strength o.. A first-order fusional
transition under reversible tensile conditions requires the
least (minimum) work on the fiber to transform the perfect
crystal to the random melt, a transition of maximum breadth
from maximum to minimum order. This work cannot be
exceeded in a reversible transition, not even if it is punctu-
ated with an intervening transition or transitions. Any such
intervening transition must lie within the crystal-melt tran-
sition, dividing it into a two-step affair, each of less heat and
entropy of transition than the crystal-melt quantities. Con-
sequently, if the polyethylene transition observed (failure) is
not that of crystal — melt but rather an intervening transi-
tion of perhaps crystal (form 1)— crystal (form 2) this
tensile work of transition must be less than the fusional
work W, calculated above. Situations, for which failure
work, under reversible conditions, exceeds fusional work,
as apparently is the case with polyethylene, cannot be
explained by an intervening transition. A previous publica-

tion [8] on solid—solid phase transitions may be of interest
here.

However, this does draw the question of how it is possible
for experimental failure work to exceed tensile fusional
work if fusion is the mechanism of failure? Two explana-
tions readily come to mind. Either the empirical data is
contaminated with a small systemic error, or the strain-
rate (0.00667 s~ ' herein) is insufficiently slow to replicate
thermodynamic (reversible) conditions. A third explanation,
perhaps a partial explanation only, is incomplete c-axis
crystallite orientation along the fiber axis. Incomplete orien-
tation has not yet been factored into the theory.

A more likely explanation, however, involves the approx-
imation W; = wW,, Eq. (11). Actually, W, must exceed
oW, by a small amount, depending upon the degree of
fiber imperfection, because deformational work of amor-
phous regions is neglected. Thus, because W, > oW,

o = RKW,]1" > 2wk, W,

The slope of o* vs (wK;)"* therefore produces an appar-
ent value of W, that exceeds its true value. Consequently,
our experimental value of the apparent W, is expected to be
a little larger than the rigorous theoretical value of the
perfect fiber, and in general a confliction with the laws of
thermodynamics is not manifest. Empirical results appear in
accord with the theoretical expectations. This is a strong
argument weighing heavily in favor of the random distribu-
tion of relaxation rates, which encourages retention of that
distribution as a competitive theoretical factor. However,
our data do not supply a conclusive result at this time.
Tentatively it appears that the monodisperse function may
suffice, as we earlier surmised [4], but this is subject to
revision as additional studies may warrant.

Appendix A

The traditional description of polymer visco-elasticity is
based on phenomenological rather than molecular concepts.
To be sure, molecular theories are important and often
employed, but their applicability is essentially limited to
the region where the constituent molecules are elastically
rubber-like: that is, the polymer molecules and sub-chains
thereof behave in accord with the kinetic theory of elasticity
under the time—temperature conditions imposed. Anterior
phenomenological concepts constructed about hypothetical
idealized springs and dashpots also have various limitations,
principally an absence of a general analytical expression for
a necessary spectrum, or distribution, of mechanical relaxa-
tion/retardation times. Such a spectrum is inferred from the
failure of a single relaxation/retardation time to replicate
adequately empirical visco-elastic data.

The phenomenological version of visco-elasticity substi-
tutes for the real polymer material an artificial, hypothetical
array of viscous dashpots and elastic springs appropriately
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configured to accommodate either stress relaxation or
dimensional creep. The springs and dashpots are not real,
merely imaginary artifices capable of simulating visco-
elastic behavior if appropriately arrayed.

Stress relaxation is the sudden imposition of an initial
strain &, remaining constant thereafter, by a stress o that
degenerates with time as viscous flow (i.e. slipping and
sliding of molecules and submolecules irreversibly past
one another) diminishes the initial elastic response of the
material. It is well established that this procedure behaves in
a manner similar to a spring and dashpot connected in series
(a Maxwell element) if the polymer is uncross-linked —
that is, if the individual polymer molecules are unencumbered
in their individual motions by chemical means so as to yield
an equilibrium stress o, = 0 at large times. The relaxation
time 7 is the time t = Tnecessary for the element to relax its
stress o to gy/e at constant strain &, A single Maxwell
element, thus a single relaxation time, is inadequate for
good results. Instead an array of Maxwell elements aligned
in parallel, each with its own characteristic relaxation time
reflecting somewhat more or less local variations of elastic
moduli and viscosities within the actual material, seems
capable of accurate simulations of relaxation data if the
distribution of relaxation times (also called a spectrum) is
known. Note that the total stress on the array is the sum over
all elemental contributions, and each Maxwell unit is
equally strained, &.

If the stretched polymer is a lightly cross-linked network,
it must of necessity have a finite equilibrium stress at very
long times. Simulation of this material is accomplished by
connecting an additional spring in parallel with each
Maxwell element, providing a basic modified three-unit
Maxwell element, all of which are arrayed in parallel also.

Deformable parallel elements respond independently to
an applied stress. All are equally strained, and stress relaxa-
tions occur independently at various rates as determined by
the individual relaxation times 7. Consequently, the spec-
trum (or distribution) of relaxation times 7 must be gener-
ated by a random distribution of the 7s among the elements.
Fortunately, as shown herein, this is a straightforward
calculation.

Dimensional creep occurs if a constant load is attached to
the polymer, causing continued strain elongation along the
load direction. This behavior is similar to that of a Voigt
element, which is an elastic spring paralleled with a viscous
dashpot. Refined simulation requires an array of Voigt
elements connected in series, but this array is only applic-
able to cross-linked polymers. Uncross-linked material
requires an additional dashpot joined in series to each
Voigt element — a modified, three-unit Voigt element.
Such modified Voigt elements are also connected in series.
In creep simulations, all elements experience the same,
identical load, but each must elongate independently as
determined by its particular retardation time 7. The retarda-
tion times are randomly distributed among the elements in
exactly the same manner as relaxation times.

Our purpose is to inquire about the random distribution,
or spectrum, of 7 as required by the Maxwell/Voigt arrays,
which are the least complicated simulants of polymer visco-
elasticity. However, the inquiry actually is directed to the
random distribution of the visco-elastic relaxation/retarda-
tion rate constants k, which are the reciprocals of 7. This
alteration is insubstantive, merely a manipulative mathema-
tical convenience. Consequently, the distribution is rapidly
and easily developed. Of immediate interest and import is
an incorporation of the distribution into the fusion theory of
strength of imperfect (real) fibers of finite molecular weight
crystalline polymers. However, its applicability to visco-
elastic polymers in general, while unexplored, is not
unnoticed. It appears to be the only distribution or spectrum
that transcends the entire range of times 7 from very short to
very long. A single example (viscosity) is offered in the
following section.

A.l. A random, most probable distribution

Our treatment is phenomenological and statistical;
molecular and sub-molecular analogs are not introduced,
except perhaps as wide generalizations in the sense that
both viscous and elastic behaviors must devolve from inter
and intramolecular characteristics of the polymer molecules.

Stress relaxation and dimensional creep are simulated by
visco-elastic arrays consisting of elastic springs and dash-
pots. A relaxation time 7 is defined as the quotient of vis-
cosity 1 by spring modulus K, and relaxation (rate) constant
k = 7~ = K/m. Such constants vary throughout the system
according to local conditions, which are simulated by appro-
priate Maxwell elements. What then is the probability that
an element has a rate constant of a particular value? Such a
probability may well be a smooth, continuous variation
from one value to another, but we resort to the common
technique of introducing a discontinuous variable initially
and move to a continuous function if needed. Let p repre-
sent the probability that a rate constant is of unit value (to be
defined) and p? one of two units value, and of j units value
pj, denoted as P;. Thus

Pj=pl=c, (Al)

where g = —Inpand p < 1.

The probability P; is the probability a Maxwell (or Voigt)
element has a mechanical rate constant k;. Within a specified
system there are N; such elements, the sum over all j being
the total number N of elements in the simulation system, i.e.

SN;=N, j=123 . 0. (A2)
The average value of j in the system is (), which is
D JN; = NG,

and the rate constant k; = jk; where k; is the smallest constant
and serves to define the unit value previously mentioned. The
relaxation time 7; = k; ' is therefore the largest in the sys-
tem. The average rate constant is (k) = (j)k,, the reciprocal

j=12.3,..,0 (A3)
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of which is denoted 7", which turns out to be the time of
failure or fracture tf5 = 7 = (k)_'. The summations above
exclude j = 0 because a zero rate constant means no relaxa-
tion at all. At the other extreme j is extended to infinity
because N;— 0 as j— 0.

We now determine N; for a random distribution as
required by the simulation arrays. The probability of a parti-
cular assignment of ks is

P, (A4)

But all possible arrangements or assignments are equally
probable. Since the total number of arrangements (complex-
ions or ways) is N!/II;N;!, the total probability P is the
product with Eq. (A4), i.e.

N! /
= (89

Following standard procedures in statistical mechanics
the set of N;s for which P is a maximum, subject to condi-
tions (A2) and (A3), is the desired distribution, which is

Ny=NeEP-De ™, j=1,2.3,.., 0, (A6)
where
e = NEP -1, (A7)
1
_B _
& =1- -
O

The Lagrangian multipliers o and 8 are associated with,
respectively, Eqgs. (A2) and (A3) [9].

A single distribution is usually inadequate to simulate
amorphous polymer systems over many decades of time.
For example, it is widely believed that intermolecular entan-
glements necessitate a separate, additional distribution at
long times. To the extent that all such distributions are
functionally identical, they can be treated by the distribu-

tion, Eq. (A6). Consider viscosity. Let relaxations within a
molecule be represented by a prime (') and intermolecular
entanglement relaxations by double prime (”). If viscosity is
the dependent variable, modulus and rate constant are inde-
pendent. Thus the moduli in a given distribution can be
replaced by the distribution average (K'), and we have

_ <K/> 00 M <K//> 0o ﬂ

kIZ k’{Z]’

1 1 ] 1

_ NI<K/> NII<K//> 1 )

B [ g H ]( 1) (A9
K/ K// )

~ [W + ] In(;). (A9)

where N'(K'y = K’ and N"(K") = K".
Eq. (A9) may be written as 1 = K(7) or

n =K7Y+ K"{(7"y = K(7), (A10)

where K is the average system modulus and (7) is the aver-
age relaxation time. Note that (7){k) = In{j), (7/)}k') =
In(j), etc., if {j) > 1.
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